

Search for the decay $B_{s(d)}$ --> $e\mu$ in RUN II

Robin Madrak, Kaori Maeshima, Ting Miao <u>Hans Wenzel</u> CDF B-Decays and CPV Meeting November 21st, 2005

Outline

- Motivation, Theory, results from Run I and our competition (CLEO, BELLE).
- Strategy for Run-II measurement
- Normalization mode
- Bs->e μ reconstruction
- Choice of background sample(s)
- Signal optimization
- Acceptance calculation
- Expectation

Theory(I)

Within the Standard Model the decays B_s --> e μ and B_d --> e μ are forbidden by lepton flavor conservation; observation of either of these decays would be evidence for new physics.

In particular the assumption of a local gauge symmetry between quarks and leptons leads to the prediction of a new force of nature that mediates transitions between quarks and leptons.

One of the simplest models that incorporates this idea is the Pati-Salam model based on the group SU(4)_c where the lepton number is the fourth "color." (Physical Review D 10, 1974)

At some high-energy scale, the group $SU(4)_c$ is spontaneously broken to $SU(3)_c$, liberating the leptons from the influence of the strong interaction and breaking the symmetry between quarks and leptons.

Theory(II)

This model predicts heavy spin-one gauge bosons called Pati-Salam leptoquarks PS_{LQ} that carry both color and

lepton quantum numbers.

Note! The Pati Salam model:

- allows for cross-generation couplings,
- leads to violation of baryon (B) and lepton (L) number, though fermion number F=B+L is still conserved

Theory(III)

 PS_{LQ} interact strongly with the coupling constant $\alpha_s(Q^2)$ extrapolated to $Q^2=M_{LO}^{\ \ 2}$

Run I measurement

Absolute measurement!

<u>Dataset:</u> e μ Trigger: $P_T(\mu) > 3$ GeV/c , $E_T(e) > 5$ GeV

MC:

- Acceptance
- •cτ cut
- Pointing Angle

Data/Control samples:

- Trigger efficiency
- •Isolation, Pointing Angle
- Lepton ID cuts

Requirement	Efficiency in $\%$
Geometric and kinematic acceptance for	2.27 ± 0.024
$p_T(B) > 6 \text{ GeV}/c$ and rapidity $ y(B) < 1$	
Trigger efficiency	37.2 ± 1.6
Reconstruction of two tracks in CTC	89.8 ± 3.6
Muon selection criteria	99.5 ± 0.1
Electron selection criteria	84.8 ± 1.1
Track and vertex quality selection criteria	68.3 ± 3.1
Proper decay length ($\lambda > 100 \mu m$)	81.0 ± 0.8
Pointing angle ($\Delta \varphi < 0.1$)	85.2 ± 2.3
Isolation $(I > 0.7)$	85.1 ± 3.0
Mass window	98.0 ± 0.6
Total efficiency \times acceptance (ϵ_{tot})	0.252 ± 0.022

$$2 \cdot \sigma(B) \cdot \mathcal{B}(B \to e^{\pm} \mu^{\mp}) < \tfrac{N^l(B \to e^{\pm} \mu^{\mp})}{\int \mathcal{L} dt \cdot \epsilon_{tot}}.$$

Run I, Belle and CLEO

In Run I with 102 pb⁻¹, published in PRL(81) 1998,

@ 90 (95) % C.L. we obtained:

$$\begin{array}{l} \mathcal{B}(B_s^0 \to e^{\pm} \mu^{\mp}) < 6.1(8.2) \times 10^{-6} \\ \mathcal{B}(B_d^0 \to e^{\pm} \mu^{\mp}) < 3.5(4.5) \times 10^{-6} \end{array}$$

Which corresponds to:

$${
m M_{LQ}}(B_s^0) > 20.7(19.3) {
m TeV/c^2} \ {
m M_{LQ}}(B_d^0) > 21.7(20.4) {
m TeV/c^2}$$

Our competition @ 90% C.L.:

$$\mathcal{B}(B_d^0 \to e^\pm \mu^\mp) < 1.7 \times 10^{-7} \, (\mathrm{BELLE})$$

$$\mathcal{B}(B_d^0 \to e^{\pm} \mu^{\mp}) < 1.5 \times 10^{-6} \, (\text{CLEO2})$$

Run II measurement

- Relative Measurement!
- Dataset: Two Track SVT Trigger
- Require tracks to match tracks identified by SVT
- Require tracks to be identified as e or μ , assign mass to tracks accordingly
- Use the B→ 2 hadrons channel as reference mode, many efficiencies and uncertainties cancel.
- Set a limit:

http://www-cdf.fnal.gov/physics/statistics/statistics_home.html CDF Node 6428

$$\mathcal{B}(B \to e^{\pm}\mu^{\mp}) < \frac{N^l(B \to e^{\pm}\mu^{\mp}) \cdot \mathcal{B}(B \to h^+h^-)}{\epsilon_{rel} \cdot N(B \to h^+h^-)}$$

Track and B-Meson selection

the B->hh analysis CMS node 7066,

Require good run list,

Data set: xbpp0d,

offline version 6.1.1.

Luminosity: 360 pB⁻¹

- Color	
Track selection:	
# axial COT Hits	≥ 20
# stereo COT Hits	≥ 16
# $r - \varphi$ SVXII Hits	≥ 3
$ \eta $	≤ 1
p_T	$\geq 2GeV/c$
$p_T(1) + p_T(2)$	$\geq 5.5 GeV/c$
$q(1) \times q(2)$	< 0
$\Delta \phi$	$22^{\circ} < \Delta \phi < 150^{\circ}$
$ d_0 $	$ 140\mu m < d_0 < 1mm$
$d_0(1) * d_0(2)$	< 0
B-candidate selection:	
invariant mass	4.6 < M(B) < 6.
$ \eta (B)$	≤ 1
$ d_0 (B)$	$\leq 80 \mu m$
Δz	$ z_0(1) - z_0(2) \le 5cm$
L_{xy}	$\geq 300 \mu m$

Track and B-Meson selection

of Events: 2520+/- 88

Peak: 5.251 GeV/c^2

 $\sigma_{\rm M}$: 35MeV/c²

Track and B-Meson selection

Peak: 5.240 GeV/c²

 $\sigma_{\rm M}$: 35 MeV/c²

Relative efficiencies

- Electron Acceptance + selection Efficiencies
- Losses out of the mass window due to Bremsstrahlung, Trigger efficiencies?
- μ Acceptance + selection Efficiencies
- Efficiencies of additional selection requirement to optimize S²/Bgr: Isolation, Δφ, cτ, p_T

electron Identification

Track based Electron ID described in CDF node 7518

CEM/CES fiducial coverage: 0.802+/-0.015

 ε (ele) ~ 70 %

μ Identification

- CMU+CMX fiducial coverage: 0.396+0.283=0.679 (Run-II TDR)
- Muon ID efficiency:
 - CMU chi2 (r-phi)<9 eff=99.56+0.03% (CDF note 6114).
 - CMX chi2(r-phi)<9 eff=99.13+-0.05%(CDF 6835).

Bremsstrahlungs losses. Wenzel Nov 21st, 2005 slide - 15 (from MC)

PT(B)>2GeV/c

PT(B)>5GeV/c

Optimization of selection Search for the decay B--> eµ in RUN II Criteria

Pointing Angle $\Delta \phi$:

\rightarrow $P_{T}(e)$ $P_{T}(e\mu)$ **Decay Vertex** $P_T(\mu)$ Beam spot Pointing Angle 🕂 Signal Background 12 10 0.05 0.1 0.15 0.25 $\Delta(\phi)[rad]$

Track based Isolation:

$$I = \frac{p_{\mathrm{T}}(e\mu)}{p_{\mathrm{T}}(e\mu) + \sum p_{\mathrm{T}}}$$

Optimization of selection criteria

Maximize Figure of Merit: $FOM = \varepsilon^2 \times Rei$

ε : # Signal Events after cuts /#Signal events before cut

Rej: # Bgr. Events before cuts /# Bgr. events after cuts

The number of Signal and the number of Bgr. Events from a fit to the entire B->hh invariant mass spectrum.

Optimum:

$$\Delta \phi < 0.1 \text{ rad}$$
Iso > 0.7
 $\epsilon = 65\%$
Rej = 11.3

Expectation with current Menzel Nov 21st, 2005 slide - 18 data

• B_d:

```
Assume 60% ->K\pi in sample,

Br(B_d -> K\pi) = 1.85 \times 10^{-5}

Assume: 0 Events -> 2.3 @ 90%C.L.

Br(B_d -> e\mu) > 1.2 \times 10^{-7}
```

• B_s:

Assume 26% ->KK in sample, Br(B_s ->KK)= 3.1×10^{-5} Assume: 0 Events -> 2.3 @ 90%C.L. Br(B_d->e μ) > 4.6×10^{-7}

No systematics,

Plan

- Check and double check.
- Produce MC sample for various checks.
- Get procedure in place to extract limit including systematics.
- Plan to get final result with 1fb⁻¹ of data.

Backup Slides

